TY - JOUR
T1 - Postglacial relative sea level change and glacier activity in the early and late Holocene: Wahlenbergfjorden, Nordaustlandet, Svalbard
AU - Schomacker, Anders
AU - Farnsworth, Wesley R.
AU - Ingolfsson, Ólafur
AU - Allaart, Lis
AU - Håkansson, Lena
AU - Retelle, Michael
AU - Siggaard-Andersen, Marie-Louise
AU - Korsgaard, Niels Jakup
AU - Rouillard, Alexandra
AU - Kjellman, Sofia E.
N1 - Funding Information:
Sveinn Brynjólfsson and Sara Mollie Cohen are thanked for field assistance. Fieldwork and radiocarbon dates were funded by the Carlsberg Foundation (CF14-0756 to Schomacker) and Department of Arctic Geology, The University Centre in Svalbard (UNIS), respectively. Geospatial support was provided by the Polar Geospatial Center, and DEM(s) were created from DigitalGlobe, Inc., imagery and funded under National Science Foundation awards 1043681, 1559691, and 1542736. We thank Ole Bennike, Svend Funder, Antony Ruter, and Peter Ilsøe for macrofossil identification and lab assistance. The manuscript benefited from constructive review comments from Andy Emery. The publication charges for this article have been funded by a grant from the publication fund of UiT The Arctic University of Norway.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Sediment cores from Kløverbladvatna, a threshold lake in Wahlenbergfjorden, Nordaustlandet, Svalbard were used to reconstruct Holocene glacier fluctuations. Meltwater from Etonbreen spills over a threshold to the lake, only when the glacier is significantly larger than at present. Lithological logging, loss-on-ignition, ITRAX scanning and radiocarbon dating of the cores show that Kløverbladvatna became isolated from Wahlenbergfjorden c. 5.4 cal. kyr BP due to glacioisostatic rebound. During the Late Holocene, laminated clayey gyttja from lacustrine organic production and surface runoff from the catchment accumulated in the lake. The lacustrine sedimentary record suggests that meltwater only spilled over the threshold at the peak of the surge of Etonbreen in AD 1938. Hence, we suggest that this was the largest extent of Etonbreen in the (mid-late) Holocene. In Palanderbukta, a tributary fjord to Wahlenbergfjorden, raised beaches were surveyed and organic material collected to determine the age of the beaches and reconstruct postglacial relative sea level change. The age of the postglacial raised beaches ranges from 10.7 cal. kyr BP at 50 m a.s.l. to 3.13 cal. kyr BP at 2 m a.s.l. The reconstructed postglacial relative sea level curve adds valuable spatial and chronological data to the relative sea level record of Nordaustlandet.
AB - Sediment cores from Kløverbladvatna, a threshold lake in Wahlenbergfjorden, Nordaustlandet, Svalbard were used to reconstruct Holocene glacier fluctuations. Meltwater from Etonbreen spills over a threshold to the lake, only when the glacier is significantly larger than at present. Lithological logging, loss-on-ignition, ITRAX scanning and radiocarbon dating of the cores show that Kløverbladvatna became isolated from Wahlenbergfjorden c. 5.4 cal. kyr BP due to glacioisostatic rebound. During the Late Holocene, laminated clayey gyttja from lacustrine organic production and surface runoff from the catchment accumulated in the lake. The lacustrine sedimentary record suggests that meltwater only spilled over the threshold at the peak of the surge of Etonbreen in AD 1938. Hence, we suggest that this was the largest extent of Etonbreen in the (mid-late) Holocene. In Palanderbukta, a tributary fjord to Wahlenbergfjorden, raised beaches were surveyed and organic material collected to determine the age of the beaches and reconstruct postglacial relative sea level change. The age of the postglacial raised beaches ranges from 10.7 cal. kyr BP at 50 m a.s.l. to 3.13 cal. kyr BP at 2 m a.s.l. The reconstructed postglacial relative sea level curve adds valuable spatial and chronological data to the relative sea level record of Nordaustlandet.
UR - http://www.scopus.com/inward/record.url?scp=85065159841&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-43342-z
DO - 10.1038/s41598-019-43342-z
M3 - Article
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
M1 - 6799
ER -