TY - JOUR
T1 - Polyphased rare-element magmatism during late orogenic evolution
T2 - geochronological constraints from NW Variscan Iberia
AU - Melleton, Jérémie
AU - Gloaguen, Eric
AU - Frei, Dirk
AU - Lima, Alexandre
AU - Vieira, Romeu
AU - Martins, Tania
N1 - Publisher Copyright:
© 2022 Published by EDP Sciences.
PY - 2022/7/25
Y1 - 2022/7/25
N2 - Rare-element granites and pegmatites represent important sources of raw materials for clean, green and high technologies, such as lithium and tantalum, for example. However, mechanisms of rare-element granites and pegmatite's origin are still far from being fully understood. Several rare-element pegmatite fields and a rare-element granite are known in the Variscan realms located in Iberia (Spain and Portugal), enhancing the interest of this area for studying the formation of these extremely fractionated melts. In situ U-Pb dating by LA-SF-ICP-MS of columbite-group minerals from rare-element granites and pegmatites of the Iberian Variscan belt provides new constraints on the generation of rare-element melts. Three events have been recognized: (i) Emplacement of the Argemela rare-element granite, in the Central Iberian Zone (CIZ), with an age of 326 ± 3 Ma; (ii) Emplacement of rare-element pegmatites from the Galicia-Trás-os-Montes Zone (GTOMZ), at an average age of 310 ± 5 Ma; (iii) Emplacement of rare-element pegmatites in the CIZ and in the southern GTOMZ at about 301 ± 3 Ma. These two last events are coeval with the two peaks of ages for the late orogenic magmatism at ca. 308 Ma and 299 Ma, and all dated rare-element pegmatites clearly emplaced during the late-orogenic evolution of the Variscan belt. Contemporaneous fields of rare-element pegmatites are arranged in belts following those formed by similar granitoid suites. Pegmatite fields from both the GTOMZ and the CIZ reveal a southward propagation of ages of emplacement, which matches the observed propagation of deformation, metamorphism and magmatism in the two different geotectonic zones. Existence of three successive rare-element events in the Iberian Massif argues against the involvement of lower crustal HP-HT metamorphism in the generation of rare-element melts. Possible sources of rare-element-enriched melts are more likely located in the middle to upper crust, as are the major components of granitic magmatism. Analyses of U and Pb isotopes from columbite-group minerals are very robust and reproducible, making them good candidates for dating ore deposits related to peraluminous magmatism as well as REE- and Nb-bearing deposits.
AB - Rare-element granites and pegmatites represent important sources of raw materials for clean, green and high technologies, such as lithium and tantalum, for example. However, mechanisms of rare-element granites and pegmatite's origin are still far from being fully understood. Several rare-element pegmatite fields and a rare-element granite are known in the Variscan realms located in Iberia (Spain and Portugal), enhancing the interest of this area for studying the formation of these extremely fractionated melts. In situ U-Pb dating by LA-SF-ICP-MS of columbite-group minerals from rare-element granites and pegmatites of the Iberian Variscan belt provides new constraints on the generation of rare-element melts. Three events have been recognized: (i) Emplacement of the Argemela rare-element granite, in the Central Iberian Zone (CIZ), with an age of 326 ± 3 Ma; (ii) Emplacement of rare-element pegmatites from the Galicia-Trás-os-Montes Zone (GTOMZ), at an average age of 310 ± 5 Ma; (iii) Emplacement of rare-element pegmatites in the CIZ and in the southern GTOMZ at about 301 ± 3 Ma. These two last events are coeval with the two peaks of ages for the late orogenic magmatism at ca. 308 Ma and 299 Ma, and all dated rare-element pegmatites clearly emplaced during the late-orogenic evolution of the Variscan belt. Contemporaneous fields of rare-element pegmatites are arranged in belts following those formed by similar granitoid suites. Pegmatite fields from both the GTOMZ and the CIZ reveal a southward propagation of ages of emplacement, which matches the observed propagation of deformation, metamorphism and magmatism in the two different geotectonic zones. Existence of three successive rare-element events in the Iberian Massif argues against the involvement of lower crustal HP-HT metamorphism in the generation of rare-element melts. Possible sources of rare-element-enriched melts are more likely located in the middle to upper crust, as are the major components of granitic magmatism. Analyses of U and Pb isotopes from columbite-group minerals are very robust and reproducible, making them good candidates for dating ore deposits related to peraluminous magmatism as well as REE- and Nb-bearing deposits.
KW - Columbite group minerals
KW - Iberian Massif
KW - LA-SF-ICPMS dating
KW - Rare-element granite and pegmatite
KW - Variscan orogeny
UR - http://www.scopus.com/inward/record.url?scp=85139872722&partnerID=8YFLogxK
U2 - 10.1051/bsgf/2022004
DO - 10.1051/bsgf/2022004
M3 - Article
AN - SCOPUS:85139872722
SN - 0037-9409
VL - 193
JO - BSGF - Earth Sciences Bulletin
JF - BSGF - Earth Sciences Bulletin
IS - 1
M1 - 7
ER -