Abstract
Ferric based coprecipitation–low pressure membrane filtration is a promising arsenic (As) removal method, however, membrane fouling mechanisms are not fully understood. In this study we investigated the effect of feed water composition and membrane pore size on arsenate [As(V)] removal and membrane fouling. We observed that As removal efficiency was independent of the membrane pore size because the size of the Fe(III) particles was larger than the pore size of the membranes, attributed to a high calcium concentration in the feed water. Arsenic coprecipitation with Fe(III) (oxyhydr)oxides rapidly reached equilibrium before membrane filtration, within 1 min. Therefore, As removal efficiency was not improved by increasing residence time before membrane filtration. The removal of As(V) was strongly dependent on feed water composition. A higher Fe(III) dose was required to reduce As(V) to sub-µg/L levels for feed water containing higher concentration of oxyanions such as phosphate and silicate, and lower concentration of cations such as calcium. Cake-layer formation was observed to be the predominant membrane fouling mechanism.
Original language | English |
---|---|
Article number | 116644 |
Number of pages | 9 |
Journal | Separation and Purification Technology |
Volume | 241 |
DOIs | |
Publication status | Published - 15 Jun 2020 |
Keywords
- Arsenic removal
- Coprecipitation
- Groundwater treatment
- Iron chloride
- Microfiltration
- Ultrafiltration
Programme Area
- Programme Area 2: Water Resources