TY - JOUR
T1 - Low oxygen seawater and major shifts in the paleoenvironment towards the terminal Ediacaran
T2 - Insights from the Portfjeld Formation, North Greenland
AU - Rugen, Elias J.
AU - Ineson, Jon R.
AU - Frei, Robert
N1 - Funding Information:
The authors want to thank Cristina Nora Jensen de Olsen and Toni Larsen for the help in the laboratory and Toby Leeper for the TIMS support. We would like to thank three anonymous reviewers for their comments and suggestions which greatly improved our interpretations. This work was funded by a grant awarded to R.F. by the Danish Agency for Science, Technology and Innovation (grant number 11-103378). Fieldwork in North Greenland in 2006 was supported by the Danish Natural Science Research Council (FNU Jr. nr. 272-05-0293).
Publisher Copyright:
© 2022
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Earth's environment during the diversification of metazoans in the Late Ediacaran was characterised, amongst other factors, by changing oxygen levels and an extreme negative carbon isotope (δ13C) excursion, the Shuram Excursion. The Portfjeld Formation, North Greenland, deposited in the Franklinian Basin of eastern Laurentia, presents a unique opportunity to investigate a previously geochemically unstudied succession of Ediacaran marine carbonates to better understand the environment at this time. The succession encompasses a δ13C excursion (from +4 to −8‰) comparable to the Shuram Excursion, as well as the Portfjeld Biota, fossils akin to the earliest putative metazoan life forms, the Weng'an Biota. We present a multiproxy geochemical study of 44 samples including rare earth element (and yttrium; REE + Y), chromium isotope (δ53Cr) and strontium isotope (87Sr/86Sr) compositions. The Portfjeld Formation reveals that low oxygen waters existed beneath oxic surface waters in a stratified early Franklinian Basin. Samples from an interval including bituminous cherty dolomites are enriched in cerium relative to its neighbouring REE+Y's, expressed as positive cerium anomalies (Ce/Ce* = 1.15–1.38), as well the redox sensitive element molybdenum (EF(Mo) = 23–179). This indicates deposition in waters with active metal oxyhydroxide dissolution, which necessitates dissolved oxygen levels as low as <10 μM. This has potential implications for the habitable environment of early putative metazoan forms, as the Portfjeld Biota fossils are found in this interval. The δ53Cr composition of carbonates can be used to track redox related paleoenvironmental changes. A stratigraphic increase in the estimated authigenic δ53Cr composition (from +0.75 to +1.28‰) occurs throughout the nadir and recovery of the succession's δ13C carbon excursion. This δ53Cr shift coincides with an increase in detrital element concentration and 87Sr/86Sr values. Therefore, in this instance the δ53Cr composition of the carbonates of the Portfjeld Formation appears to have responded to elevated on-land weathering, and thus nutrient input, which may have induced further fractionation associated with surface water Cr (VI) back reduction by primary producers, in line with modern ocean observations. These geochemical changes indicate that Ediacaran carbon isotope excursions may be tied to environmental shifts that eventually led to the dramatic increase in metazoan complexity that ensued.
AB - Earth's environment during the diversification of metazoans in the Late Ediacaran was characterised, amongst other factors, by changing oxygen levels and an extreme negative carbon isotope (δ13C) excursion, the Shuram Excursion. The Portfjeld Formation, North Greenland, deposited in the Franklinian Basin of eastern Laurentia, presents a unique opportunity to investigate a previously geochemically unstudied succession of Ediacaran marine carbonates to better understand the environment at this time. The succession encompasses a δ13C excursion (from +4 to −8‰) comparable to the Shuram Excursion, as well as the Portfjeld Biota, fossils akin to the earliest putative metazoan life forms, the Weng'an Biota. We present a multiproxy geochemical study of 44 samples including rare earth element (and yttrium; REE + Y), chromium isotope (δ53Cr) and strontium isotope (87Sr/86Sr) compositions. The Portfjeld Formation reveals that low oxygen waters existed beneath oxic surface waters in a stratified early Franklinian Basin. Samples from an interval including bituminous cherty dolomites are enriched in cerium relative to its neighbouring REE+Y's, expressed as positive cerium anomalies (Ce/Ce* = 1.15–1.38), as well the redox sensitive element molybdenum (EF(Mo) = 23–179). This indicates deposition in waters with active metal oxyhydroxide dissolution, which necessitates dissolved oxygen levels as low as <10 μM. This has potential implications for the habitable environment of early putative metazoan forms, as the Portfjeld Biota fossils are found in this interval. The δ53Cr composition of carbonates can be used to track redox related paleoenvironmental changes. A stratigraphic increase in the estimated authigenic δ53Cr composition (from +0.75 to +1.28‰) occurs throughout the nadir and recovery of the succession's δ13C carbon excursion. This δ53Cr shift coincides with an increase in detrital element concentration and 87Sr/86Sr values. Therefore, in this instance the δ53Cr composition of the carbonates of the Portfjeld Formation appears to have responded to elevated on-land weathering, and thus nutrient input, which may have induced further fractionation associated with surface water Cr (VI) back reduction by primary producers, in line with modern ocean observations. These geochemical changes indicate that Ediacaran carbon isotope excursions may be tied to environmental shifts that eventually led to the dramatic increase in metazoan complexity that ensued.
KW - Carbon isotope excursion
KW - Chromium and strontium isotopes
KW - Detrital correction model
KW - Ediacaran embryos
KW - Positive cerium anomaly
KW - Rare earth elements
UR - http://www.scopus.com/inward/record.url?scp=85136066222&partnerID=8YFLogxK
U2 - 10.1016/j.precamres.2022.106781
DO - 10.1016/j.precamres.2022.106781
M3 - Article
AN - SCOPUS:85136066222
SN - 0301-9268
VL - 379
JO - Precambrian Research
JF - Precambrian Research
M1 - 106781
ER -