TY - JOUR
T1 - Impact of surface-applied liquid manure on the drainage resistance profile of an agricultural tile-drained clay till field
AU - Bech, Tina B.
AU - Badawi, Nora
AU - Rosenbom, Annette E.
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Environmental Quality © 2022 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Dissemination of antibiotic resistance genes (ARGs) in aquatic environments is a concern due to human and animal health. Application of liquid manure on agricultural land is an important source of ARGs, where pathogens, antibiotic-resistant bacteria, and selective agents are released. To improve our understanding of ARGs spreading through soils, our main objective was to evaluate the effectiveness of the soil as a barrier protecting water resources. Over the course of a year, profiles and abundances of ARGs and mobile genetic elements in soil and drainage from an agricultural tile-drained clay till field were investigated upon liquid pig manure application by applying high-throughput quantitative polymerase chain reaction targeting 143 genes. The findings were as follows: (a) 97 genes were detected, where only the transposon gene tnpA-03/ IS6 was shared between the genes detected in drainage and those in acidified liquid manure or fertilized soils, indicating that liquid manure application had a limited impact on the drainage resistance profile; (b) intI1 gene was present in ∼60% of drainage samples in concentrations up to 1,634 intI1 ml–1; and (c) evapotranspiration from barley (Hordeum vulgare L., ‘KWS Irina’) and a low groundwater table appeared to reduce preferential transport to drainage during the first 3 mo of liquid manure application. Interestingly, the first preferential transport to drainage was observed immediately after the harvest of spring barley. Overall, during the monitoring year we found the soil to be an effective barrier against the spread of fecal ARGs even though the occurrence of the intI1 gene questions the barrier effect from previous years.
AB - Dissemination of antibiotic resistance genes (ARGs) in aquatic environments is a concern due to human and animal health. Application of liquid manure on agricultural land is an important source of ARGs, where pathogens, antibiotic-resistant bacteria, and selective agents are released. To improve our understanding of ARGs spreading through soils, our main objective was to evaluate the effectiveness of the soil as a barrier protecting water resources. Over the course of a year, profiles and abundances of ARGs and mobile genetic elements in soil and drainage from an agricultural tile-drained clay till field were investigated upon liquid pig manure application by applying high-throughput quantitative polymerase chain reaction targeting 143 genes. The findings were as follows: (a) 97 genes were detected, where only the transposon gene tnpA-03/ IS6 was shared between the genes detected in drainage and those in acidified liquid manure or fertilized soils, indicating that liquid manure application had a limited impact on the drainage resistance profile; (b) intI1 gene was present in ∼60% of drainage samples in concentrations up to 1,634 intI1 ml–1; and (c) evapotranspiration from barley (Hordeum vulgare L., ‘KWS Irina’) and a low groundwater table appeared to reduce preferential transport to drainage during the first 3 mo of liquid manure application. Interestingly, the first preferential transport to drainage was observed immediately after the harvest of spring barley. Overall, during the monitoring year we found the soil to be an effective barrier against the spread of fecal ARGs even though the occurrence of the intI1 gene questions the barrier effect from previous years.
UR - http://www.scopus.com/inward/record.url?scp=85130543371&partnerID=8YFLogxK
U2 - 10.1002/jeq2.20354
DO - 10.1002/jeq2.20354
M3 - Article
C2 - 35435263
AN - SCOPUS:85130543371
SN - 0047-2425
VL - 51
SP - 656
EP - 669
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 4
ER -