Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica

Neil Foley, Slawek Tulaczyk, Esben Auken, Cyril Schamper, Hilary Dugan, Jill Mikucki, Ross Virginia, Peter Doran

Research output: Contribution to journalArticleResearchpeer-review

39 Citations (Scopus)

Abstract

The McMurdo Dry Valleys are a polar desert in coastal Antarctica, where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. Liquid water is found at the surface only in lakes and in the temporary streams that feed them. Past geophysical exploration has yielded ambiguous results regarding the presence of subsurface water. In 2011, we used a helicopterborne, time-domain electromagnetic (TDEM) sensor to map resistivity in the subsurface across the Dry Valleys. The airborne electromagnetic (AEM) method excels at finding subsurface liquid water in polar deserts, where water remains liquid under cold conditions if it is sufficiently saline, and therefore electrically conductive. Over the course of 26 h of helicopter time, we covered large portions of the Dry Valleys and vastly increased our geophysical understanding of the subsurface, particularly with respect to water. Our data show extensive subsurface low-resistivity layers approximately 150-250mbelow the surface and beneath higher resistivity layers. We interpret the low-resistivity layers as geologic materials containing freeze-concentrated or "cryoconcentrated" hyper saline brines lying beneath glaciers and frozen permafrost. These brines appeared to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional-hydrogeologic system, wherein solutes might be transported between surface reservoirs by ionic diffusion and subsurface flow. The presence of such brines underneath glaciersmight have implications for glacier movement. Systems such as this, where brines exist beneath glacial ice and frozen permafrost, may exist elsewhere in coastal Antarctica; AEM resistivity is an ideal tool to find and survey them. Our application of TDEM demonstrates that in polar subsurface environments containing conductive brines, such a diffusive electromagnetic method is superior to radar surveying in terms of depth of penetration and ability to differentiate hydrogeologic conditions.

Original languageEnglish
Pages (from-to)WA87-WA99
JournalGeophysics
Volume81
Issue number1
DOIs
Publication statusPublished - Jan 2016
Externally publishedYes

Programme Area

  • Programme Area 2: Water Resources

Fingerprint

Dive into the research topics of 'Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica'. Together they form a unique fingerprint.

Cite this