TY - JOUR
T1 - GrSMBMIP
T2 - Intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet
AU - Fettweis, Xavier
AU - Hofer, Stefan
AU - Krebs-Kanzow, Uta
AU - Amory, Charles
AU - Aoki, Teruo
AU - Berends, Constantijn J.
AU - Born, Andreas
AU - Box, Jason E.
AU - Delhasse, Alison
AU - Fujita, Koji
AU - Gierz, Paul
AU - Goelzer, Heiko
AU - Hanna, Edward
AU - Hashimoto, Akihiro
AU - Huybrechts, Philippe
AU - Kapsch, Marie Luise
AU - King, Michalea D.
AU - Kittel, Christoph
AU - Lang, Charlotte
AU - Langen, Peter L.
AU - Lenaerts, Jan T.M.
AU - Liston, Glen E.
AU - Lohmann, Gerrit
AU - Mernild, Sebastian H.
AU - Mikolajewicz, Uwe
AU - Modali, Kameswarrao
AU - Mottram, Ruth H.
AU - Niwano, Masashi
AU - Noël, Brice
AU - Ryan, Jonathan C.
AU - Smith, Amy
AU - Streffing, Jan
AU - Tedesco, Marco
AU - Jan Van De Berg, Willem
AU - Van Den Broeke, Michiel
AU - van De Wal, Roderik S.W.
AU - van Kampenhout, Leo
AU - Wilton, David
AU - Wouters, Bert
AU - Ziemen, Florian
AU - Zolles, Tobias
N1 - Funding Information:
Financial support. This research has been supported by F.R.S.-FNRS, the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO) under the EOS project no. O0100718F and the European Union’s Horizon 2020 research and innovation programme under the PROTECT project no. 869304. This is PROTECT contribution number 3.
Funding Information:
Acknowledgements. Xavier Fettweis is a Research Associate from the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS). Computational resources used to perform MAR simulations have been provided by the Consortium des Équipements de Calcul In-tensif (CÉCI), funded by the F.R.S.FNRS under grant 2.5020.11 and the Tier-1 supercomputer (Zenobe) of the Fédération Wal-lonie Bruxelles infrastructure funded by the Walloon Region under grant agreement 1117545. Andreas Born and Tobias Zolles acknowledge financial support from the Trond Mohn Foundation. Constantijn J. Berends, Leo van Kampenhout and Heiko Goelzer have received funding from the programme of the Netherlands Earth System Science Centre (NESSC), financially supported by the Dutch Ministry of Education, Culture and Science (OCW) under grant no. 024.002.001. Edward Hanna acknowledges support from the University of Sheffield’s Iceberg high-performance computing team, especially Mike Griffiths. Philippe Huybrechts acknowledges support from the iceMOD project funded by the Research Foundation – Flanders (FWO-Vlaanderen). Marie-Luise Kapsch and Flo-rian Ziemen were funded by the German Federal Ministry of Education and Research (BMBF) through the PalMod project under grant no. 01LP1504C and 01LP1502A. Michalea King acknowledges support from the National Aeronautics and Space Administration (grant nos. 80NSSC18K1027 and NNX13AI21A). Part of the funding for Ruth H. Mottram and Peter L. Langen is provided by the Danish State through the National Centre for Climate Research (NCKF). Bert Wouters was funded by NWO VIDI grant 016.Vidi.171.063. Brice Noël was funded by the NWO VENI grant VI.Veni.192.019. Masashi Niwano, Akihiro Hashimoto, Teruo Aoki and Koji Fujita were supported in part by (1) the Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research numbers JP16H01772, JP15H01733, JP17K12817, JP17KK0017, JP18H03363 and JP18H05054, and (2) the Ministry of the Environment of Japan through the Experimental Research Fund for Global Environmental Research Coordination System. Paul Gierz is funded by the Federal Ministry for Education and Research initiative PalMod: Simulating a Full Glacial Cycle; BMBF grant 01LP1503B (project PalMod1.2). Uta Krebs-Kanzow acknowledges the Helmholtz Climate Initiative REKLIM and the project “Global sea level change since the Mid Holocene: Background trends and climate-ice sheet feedbacks” funded from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special PriorityProgram (SPP)-1889 “Regional Sea Level Change and Society” (SeaLevel). Gerrit Lohmann acknowledges the Alfred Wegener Institute’s research programme PACES2. Finally, we would like to thank the Ice Sheet Mass Balance and Sea Level (ISMASS) group, funded by CliC (Climate and Cryosphere), for sponsoring this study and Nanna Karlsson (from Geological Survey of Denmark and Greenland, Denmark) for providing airborne radar transect measurements.
Publisher Copyright:
© 2020 Author(s).
PY - 2020/11/11
Y1 - 2020/11/11
N2 - Observations and models agree that the Greenland Ice Sheet (GrIS) surface mass balance (SMB) has decreased since the end of the 1990s due to an increase in meltwater runoff and that this trend will accelerate in the future. However, large uncertainties remain, partly due to different approaches for modelling the GrIS SMB, which have to weigh physical complexity or low computing time, different spatial and temporal resolutions, different forcing fields, and different ice sheet topographies and extents, which collectively make an inter-comparison difficult. Our GrIS SMB model intercomparison project (GrSMBMIP) aims to refine these uncertainties by intercomparing 13 models of four types which were forced with the same ERA-Interim reanalysis forcing fields, except for two global models. We interpolate all modelled SMB fields onto a common ice sheet mask at 1 km horizontal resolution for the period 1980-2012 and score the outputs against (1) SMB estimates from a combination of gravimetric remote sensing data from GRACE and measured ice discharge; (2) ice cores, snow pits and in situ SMB observations; and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting model deficiencies in an accurate representation of the GrIS ablation zone extent and processes related to surface melt and runoff. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of the same order as RCMs compared with observations and therefore remain useful tools for long-term simulations or coupling with ice sheet models. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present-day SMB relative to observations, suggesting that biases are not systematic among models and that this ensemble estimate can be used as a reference for current climate when carrying out future model developments. However, a higher density of in situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 m w.e. yr-1 due to large discrepancies in modelled snowfall accumulation.
AB - Observations and models agree that the Greenland Ice Sheet (GrIS) surface mass balance (SMB) has decreased since the end of the 1990s due to an increase in meltwater runoff and that this trend will accelerate in the future. However, large uncertainties remain, partly due to different approaches for modelling the GrIS SMB, which have to weigh physical complexity or low computing time, different spatial and temporal resolutions, different forcing fields, and different ice sheet topographies and extents, which collectively make an inter-comparison difficult. Our GrIS SMB model intercomparison project (GrSMBMIP) aims to refine these uncertainties by intercomparing 13 models of four types which were forced with the same ERA-Interim reanalysis forcing fields, except for two global models. We interpolate all modelled SMB fields onto a common ice sheet mask at 1 km horizontal resolution for the period 1980-2012 and score the outputs against (1) SMB estimates from a combination of gravimetric remote sensing data from GRACE and measured ice discharge; (2) ice cores, snow pits and in situ SMB observations; and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting model deficiencies in an accurate representation of the GrIS ablation zone extent and processes related to surface melt and runoff. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of the same order as RCMs compared with observations and therefore remain useful tools for long-term simulations or coupling with ice sheet models. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present-day SMB relative to observations, suggesting that biases are not systematic among models and that this ensemble estimate can be used as a reference for current climate when carrying out future model developments. However, a higher density of in situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 m w.e. yr-1 due to large discrepancies in modelled snowfall accumulation.
UR - http://www.scopus.com/inward/record.url?scp=85096239595&partnerID=8YFLogxK
U2 - 10.5194/tc-14-3935-2020
DO - 10.5194/tc-14-3935-2020
M3 - Article
AN - SCOPUS:85096239595
SN - 1994-0416
VL - 14
SP - 3935
EP - 3958
JO - Cryosphere
JF - Cryosphere
IS - 11
ER -