Greenland meltwater storage in firn limited by near-surface ice formation

Horst Machguth, Mike MacFerrin, Dirk van As, Jason E. Box, Charalampos Charalampidis, William Colgan, Robert S. Fausto, Harro A.J. Meijer, Ellen Mosley-Thompson, Roderik S.W. van de Wal

Research output: Contribution to journalArticleResearchpeer-review

136 Citations (Scopus)

Abstract

Approximately half of Greenland's current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland's firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ∼1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

Original languageEnglish
Pages (from-to)390-393
Number of pages4
JournalNature Climate Change
Volume6
Issue number4
DOIs
Publication statusPublished - 1 Apr 2016

Programme Area

  • Programme Area 5: Nature and Climate

Fingerprint

Dive into the research topics of 'Greenland meltwater storage in firn limited by near-surface ice formation'. Together they form a unique fingerprint.

Cite this