TY - JOUR
T1 - Combining clustering methods with MPS to estimate structural uncertainty for hydrological models
AU - Vilhelmsen, Troels Norvin
AU - Auken, Esben
AU - Christiansen, Anders Vest
AU - Barfod, Adrian Sanchez
AU - Marker, Pernille Aabye
AU - Bauer-Gottwein, Peter
N1 - Publisher Copyright:
© 2019 Vilhelmsen, Auken, Christiansen, Barfod, Marker and Bauer-Gottwein.
PY - 2019/7/17
Y1 - 2019/7/17
N2 - This study presents a novel expansion of the clay-fraction (CF)/resistivity clustering method aiming at developing realizations of subsurface structures based on multiple point statistics (MPS). The CF-resistivity clustering method is used to define a data driven training image (TI) for MPS simulations. By combining this TI with uncertainty estimates obtained from correlation between the resistivity models and the unique categories in the TI, subsurface realizations are generated honoring geophysical and lithological data. The generated subsurface realizations were calibrated in a steady state groundwater model. Forecasts of well catchment zones were derived based on two wells located in areas with different levels of structural uncertainty. The catchment probability maps derived from the structural realizations were compared with the well catchment forecasted by a deterministic subsurface structure, and we are able to capture this catchment within the estimated uncertainties. We believe that this study is the first to combine MPS methods with a complete data driven workflow going directly from lithological and geophysical data to realizations of the subsurface structures. The main benefits of this is that it is data driven, fast, reproducible, and transparent.
AB - This study presents a novel expansion of the clay-fraction (CF)/resistivity clustering method aiming at developing realizations of subsurface structures based on multiple point statistics (MPS). The CF-resistivity clustering method is used to define a data driven training image (TI) for MPS simulations. By combining this TI with uncertainty estimates obtained from correlation between the resistivity models and the unique categories in the TI, subsurface realizations are generated honoring geophysical and lithological data. The generated subsurface realizations were calibrated in a steady state groundwater model. Forecasts of well catchment zones were derived based on two wells located in areas with different levels of structural uncertainty. The catchment probability maps derived from the structural realizations were compared with the well catchment forecasted by a deterministic subsurface structure, and we are able to capture this catchment within the estimated uncertainties. We believe that this study is the first to combine MPS methods with a complete data driven workflow going directly from lithological and geophysical data to realizations of the subsurface structures. The main benefits of this is that it is data driven, fast, reproducible, and transparent.
KW - Groundwater modeling
KW - MODFLOW
KW - Multiple point statistics
KW - SkyTEM
KW - SNESIM
KW - Structural uncertainty
KW - Uncertainty analysis
UR - http://www.scopus.com/inward/record.url?scp=85069543962&partnerID=8YFLogxK
U2 - 10.3389/feart.2019.00181
DO - 10.3389/feart.2019.00181
M3 - Article
AN - SCOPUS:85069543962
SN - 2296-6463
VL - 7
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
M1 - 181
ER -