Resumé
Illite-smectite (I-S) mixed-layer minerals from North Sea oil fields and a Danish outcrop were investigated to determine the detailed structure and the diagenetic clay transformation. Clay layers in the chalk and residues obtained by dissolution of the chalk matrix at pH 5 were investigated. The phase compositions and layer sequences were determined by X-ray diffraction (XRD) including simulation with a multicomponent program. The structural formulae were determined from chemical analysis, infrared (IR) and 27Al NMR spectroscopies and XRD, and the particle shape by atomic force microscopy (AFM). A high-smectite (HS) I-S phase and a low-smectitic (LS) illite-smectite-chlorite (I-S-Ch) phase, both dioctahedral, together constitute 80-90% of each sample. However, two samples contain significant amounts of tosudite and of Ch-Serpentine (Sr), respectively. Most of the clay layers have probably formed by dissolution of the chalk, but one Campanian and one Santonian clay layer in well Baron 2 may have a sedimentary origin. The HS and LS minerals are probably of detrital origin. Early diagenesis has taken place through a fixation of Mg in brucite interlayers in the LS phase, this solid-state process forming di-trioctahedral chlorite layers. During later diagenesis involving dissolution of the HS phase, neoformation of a tosudite or of a random mixed-layer trioctahedral chlorite-berthierine took place. In the tosudite, brucite-like sheets are regularly interstratified with smectite interlayers between dioctahedral 2:1 layers, resulting in ditrioctrahedral chlorite layers.
Originalsprog | Engelsk |
---|---|
Sider (fra-til) | 429-450 |
Antal sider | 22 |
Tidsskrift | Clay Minerals |
Vol/bind | 37 |
Udgave nummer | 3 |
DOI | |
Status | Udgivet - sep. 2002 |
Programområde
- Programområde 4: Mineralske råstoffer