Resumé
Hydraulic roughness exerts an important but poorly understood control on water pressure in subglacial conduits. Where relative roughness values are <5%, hydraulic roughness can be related to relative roughness using empirically-derived equations such as the Colebrook-White equation. General relationships between hydraulic roughness and relative roughness do not exist for relative roughness >5%. Here we report the first quantitative assessment of roughness heights and hydraulic diameters in a subglacial conduit. We measured roughness heights in a 125 m long section of a subglacial conduit using structure-from-motion to produce a digital surface model, and hand-measurements of the b-axis of rocks. We found roughness heights from 0.07 to 0.22 m and cross-sectional areas of 1-2 m2, resulting in relative roughness of 3-12% and >5% for most locations. A simple geometric model of varying conduit diameter shows that when the conduit is small relative roughness is >30% and has large variability. Our results suggest that parameterizations of conduit hydraulic roughness in subglacial hydrological models will remain challenging until hydraulic diameters exceed roughness heights by a factor of 20, or the conduit radius is >1 m for the roughness elements observed here.
Originalsprog | Engelsk |
---|---|
Sider (fra-til) | 423-435 |
Antal sider | 13 |
Tidsskrift | Journal of Glaciology |
Vol/bind | 63 |
Udgave nummer | 239 |
DOI | |
Status | Udgivet - 1 jun. 2017 |
Udgivet eksternt | Ja |
Programområde
- Programområde 5: Natur og klima