TY - JOUR
T1 - Relative sea level changes and glacio-isostatic modelling in the Beagle Channel, Tierra del Fuego, Chile
T2 - Glacial and tectonic implications
AU - Björck, Svante
AU - Lambeck, Kurt
AU - Möller, Per
AU - Waldmann, Nicolas
AU - Bennike, Ole
AU - Jiang, Hui
AU - Li, Dongling
AU - Sandgren, Per
AU - Nielsen, Anne Birgitte
AU - Porter, Charles T.
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/1/1
Y1 - 2021/1/1
N2 - The Beagle Channel crosses the southernmost tip of South America (Tierra del Fuego), connecting the South Atlantic with the Southeastern Pacific. Raised beaches occur up to 10 m above mean sea level (m a.m.s.l.), especially along the northern (Argentinian) shore, and have been dated using marine shells. The southern (Chilean) shore is well-known for its abundance of shell middens at different levels above the present shore, particularly along the island of Isla Navarino, but the relative sea level history in this glacially impacted landscape has not previously been investigated. In this study we present postglacial relative sea level changes on Isla Navarino, based on sediment cores from six lagoons, bogs or lakes, and stratigraphic investigations of three open sections, of which one is of MIS 5e age. In addition, one core from a lagoon in the south-western Beagle Channel has been analysed and a system of terraces was mapped in the north-western Beagle Channel. The analyses of the core sites have resulted in two tentative relative sea level curves, displaying a rapid sea level rise at 8500−6500 cal yr BP, amounting to ∼10 and 14 m in eastern and western Isla Navarino, respectively, and reaching levels of ∼8 and > 10 m, respectively, followed by a slow relative sea level fall. Our sea level observations have been compared with a range of modelling results of glacial-isostatic adjustments (GIA) for estimating timing of deglaciation and ice sheet thicknesses. Based mainly on the GIA modelling of the altitude of the MIS 5e beach sediments, situated at 13 m, we can conclude that no other uplift than GIA is needed to explain their altitude. Regarding the modelling of postglacial sea levels we can conclude that no model has been found that satisfies all of the observational evidence, but that deglaciation most likely preceded Northern Hemisphere main deglaciation by at least 3 kyr, which agrees with the deglaciation age of Isla Navarino (>16 000 cal yr BP). In addition, our model runs imply that the Patagonian and Tierra del Fuego ice sheet thicknesses were in the order of ∼1500 m.
AB - The Beagle Channel crosses the southernmost tip of South America (Tierra del Fuego), connecting the South Atlantic with the Southeastern Pacific. Raised beaches occur up to 10 m above mean sea level (m a.m.s.l.), especially along the northern (Argentinian) shore, and have been dated using marine shells. The southern (Chilean) shore is well-known for its abundance of shell middens at different levels above the present shore, particularly along the island of Isla Navarino, but the relative sea level history in this glacially impacted landscape has not previously been investigated. In this study we present postglacial relative sea level changes on Isla Navarino, based on sediment cores from six lagoons, bogs or lakes, and stratigraphic investigations of three open sections, of which one is of MIS 5e age. In addition, one core from a lagoon in the south-western Beagle Channel has been analysed and a system of terraces was mapped in the north-western Beagle Channel. The analyses of the core sites have resulted in two tentative relative sea level curves, displaying a rapid sea level rise at 8500−6500 cal yr BP, amounting to ∼10 and 14 m in eastern and western Isla Navarino, respectively, and reaching levels of ∼8 and > 10 m, respectively, followed by a slow relative sea level fall. Our sea level observations have been compared with a range of modelling results of glacial-isostatic adjustments (GIA) for estimating timing of deglaciation and ice sheet thicknesses. Based mainly on the GIA modelling of the altitude of the MIS 5e beach sediments, situated at 13 m, we can conclude that no other uplift than GIA is needed to explain their altitude. Regarding the modelling of postglacial sea levels we can conclude that no model has been found that satisfies all of the observational evidence, but that deglaciation most likely preceded Northern Hemisphere main deglaciation by at least 3 kyr, which agrees with the deglaciation age of Isla Navarino (>16 000 cal yr BP). In addition, our model runs imply that the Patagonian and Tierra del Fuego ice sheet thicknesses were in the order of ∼1500 m.
KW - Age of deglaciation
KW - Beagle Channel
KW - Coastal sections
KW - Glacio-isostatic modelling
KW - Holocene
KW - Ice-sheet thickness
KW - Lacustrine
KW - Marine and lagoon sediments
KW - MIS 5e
KW - Peat
KW - Relative sea level changes
KW - Vertical tectonics
UR - http://www.scopus.com/inward/record.url?scp=85096474927&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2020.106657
DO - 10.1016/j.quascirev.2020.106657
M3 - Article
AN - SCOPUS:85096474927
SN - 0277-3791
VL - 251
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
M1 - 106657
ER -