TY - JOUR
T1 - Reconstruction, with tunable sparsity levels, of shear wave velocity profiles from surface wave data
AU - Vignoli, Giulio
AU - Guillemoteau, Julien
AU - Barreto, Jeniffer
AU - Rossi, Matteo
N1 - Publisher Copyright:
The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For permissions, please e-mail: [email protected]
PY - 2021/6
Y1 - 2021/6
N2 - The analysis of surface wave dispersion curves is a way to infer the vertical distribution of shear wave velocity. The range of applicability is extremely wide: going, for example, from seismological studies to geotechnical characterizations and exploration geophysics. However, the inversion of the dispersion curves is severely ill-posed and only limited efforts have been put in the development of effective regularization strategies. In particular, relatively simple smoothing regularization terms are commonly used, even when this is in contrast with the expected features of the investigated targets. To tackle this problem, stochastic approaches can be utilized, but they are too computationally expensive to be practical, at least, in case of large surveys. Instead, within a deterministic framework, we evaluate the applicability of a regularizer capable of providing reconstructions characterized by tunable levels of sparsity. This adjustable stabilizer is based on the minimum support regularization, applied before on other kinds of geophysical measurements, but never on surface wave data. We demonstrate the effectiveness of this stabilizer on (i) two benchmark—publicly available—data sets at crustal and near-surface scales and (ii) an experimental data set collected on a well-characterized site. In addition, we discuss a possible strategy for the estimation of the depth of investigation. This strategy relies on the integrated sensitivity kernel used for the inversion and calculated for each individual propagation mode. Moreover, we discuss the reliability, and possible caveats, of the direct interpretation of this particular estimation of the depth of investigation, especially in the presence of sharp boundary reconstructions.
AB - The analysis of surface wave dispersion curves is a way to infer the vertical distribution of shear wave velocity. The range of applicability is extremely wide: going, for example, from seismological studies to geotechnical characterizations and exploration geophysics. However, the inversion of the dispersion curves is severely ill-posed and only limited efforts have been put in the development of effective regularization strategies. In particular, relatively simple smoothing regularization terms are commonly used, even when this is in contrast with the expected features of the investigated targets. To tackle this problem, stochastic approaches can be utilized, but they are too computationally expensive to be practical, at least, in case of large surveys. Instead, within a deterministic framework, we evaluate the applicability of a regularizer capable of providing reconstructions characterized by tunable levels of sparsity. This adjustable stabilizer is based on the minimum support regularization, applied before on other kinds of geophysical measurements, but never on surface wave data. We demonstrate the effectiveness of this stabilizer on (i) two benchmark—publicly available—data sets at crustal and near-surface scales and (ii) an experimental data set collected on a well-characterized site. In addition, we discuss a possible strategy for the estimation of the depth of investigation. This strategy relies on the integrated sensitivity kernel used for the inversion and calculated for each individual propagation mode. Moreover, we discuss the reliability, and possible caveats, of the direct interpretation of this particular estimation of the depth of investigation, especially in the presence of sharp boundary reconstructions.
KW - Free oscillations
KW - Inverse theory
KW - Structure of the Earth
KW - Surface waves
UR - http://www.scopus.com/inward/record.url?scp=85112057946&partnerID=8YFLogxK
U2 - 10.1093/gji/ggab068
DO - 10.1093/gji/ggab068
M3 - Article
AN - SCOPUS:85112057946
SN - 0956-540X
VL - 225
SP - 1935
EP - 1951
JO - Geophysical Journal International
JF - Geophysical Journal International
IS - 3
ER -