TY - JOUR
T1 - Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area
AU - Kristensen, Lars
AU - Hjuler, Morten Leth
AU - Frykman, Peter
AU - Olivarius, Mette
AU - Weibel, Rikke
AU - Nielsen, Lars Henrik
AU - Mathiesen, Anders
N1 - Publisher Copyright:
© 2016, Kristensen et al.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Denmark constitutes a low-enthalpy geothermal area, and currently geothermal production takes places from two sandstone-rich formations: the Bunter Sandstone and the Gassum formations. These formations form major geothermal reservoirs in the Danish area, but exploration is associated with high geological uncertainty and information about reservoir permeability is difficult to obtain. Prediction of porosity and permeability prior to drilling is therefore essential in order to reduce risks. Geologically these two formations represent excellent examples of sandstone diversity, since they were deposited in a variety of environments during arid and humid climatic conditions. The study is based on geological and petrophysical data acquired in deep wells onshore Denmark, including conventional core analysis data and well-logs. A method for assessing and predicting the average porosity and permeability of geothermal prospects within the Danish area is presented. Firstly, a porosity-depth trend is established in order to predict porosity. Subsequently, in order to predict permeability, a porosity–permeability relation is established and then refined in steps. Both one basin-wide and one local permeability model are generated. Two porosity-depth models are established. It is shown that the average permeability of a geothermal prospect can be modelled (predicted) using a local permeability model, i.e. a model valid for a geological province including the prospect. The local permeability model is related to a general permeability model through a constant, and the general model thus acts as a template. The applied averaging technique reduces the scatter that is normally seen in a porosity–permeability plot including all raw core analysis measurements and thus narrows the uncertainty band attached to the average permeability estimate for a reservoir layer. A “best practice” technique for predicting average porosity and permeability of geothermal prospects on the basis of core analysis data and well-logs is suggested. The porosity is primarily related to depth, whereas the permeability also depends on porosity, mineralogy and grain size, which are controlled by the depositional environment. Our results indicate that porosity and permeability assessments should be based on averaged data and not raw conventional core analysis data. The uncertainty range of permeability values is significantly lower, when average values are used.
AB - Denmark constitutes a low-enthalpy geothermal area, and currently geothermal production takes places from two sandstone-rich formations: the Bunter Sandstone and the Gassum formations. These formations form major geothermal reservoirs in the Danish area, but exploration is associated with high geological uncertainty and information about reservoir permeability is difficult to obtain. Prediction of porosity and permeability prior to drilling is therefore essential in order to reduce risks. Geologically these two formations represent excellent examples of sandstone diversity, since they were deposited in a variety of environments during arid and humid climatic conditions. The study is based on geological and petrophysical data acquired in deep wells onshore Denmark, including conventional core analysis data and well-logs. A method for assessing and predicting the average porosity and permeability of geothermal prospects within the Danish area is presented. Firstly, a porosity-depth trend is established in order to predict porosity. Subsequently, in order to predict permeability, a porosity–permeability relation is established and then refined in steps. Both one basin-wide and one local permeability model are generated. Two porosity-depth models are established. It is shown that the average permeability of a geothermal prospect can be modelled (predicted) using a local permeability model, i.e. a model valid for a geological province including the prospect. The local permeability model is related to a general permeability model through a constant, and the general model thus acts as a template. The applied averaging technique reduces the scatter that is normally seen in a porosity–permeability plot including all raw core analysis measurements and thus narrows the uncertainty band attached to the average permeability estimate for a reservoir layer. A “best practice” technique for predicting average porosity and permeability of geothermal prospects on the basis of core analysis data and well-logs is suggested. The porosity is primarily related to depth, whereas the permeability also depends on porosity, mineralogy and grain size, which are controlled by the depositional environment. Our results indicate that porosity and permeability assessments should be based on averaged data and not raw conventional core analysis data. The uncertainty range of permeability values is significantly lower, when average values are used.
KW - Averaging technique
KW - Diagenesis
KW - Geothermal reservoirs
KW - Permeability
KW - Porosity
KW - Prediction of reservoir parameters
KW - Reservoir quality
KW - Variability
UR - http://www.scopus.com/inward/record.url?scp=84962439820&partnerID=8YFLogxK
U2 - 10.1186/s40517-016-0048-6
DO - 10.1186/s40517-016-0048-6
M3 - Article
SN - 2195-4771
VL - 4
JO - Geothermal Energy
JF - Geothermal Energy
IS - 1
M1 - 6
ER -