TY - JOUR
T1 - Plastics and plastic-bound toxic metals in municipal solid waste compost from Sri Lanka
AU - Premarathna, K. S.D.
AU - Gayara Degamboda, N.
AU - Fernando, B. H.R.
AU - Sandanayake, Sandun
AU - Pathirana, Chaamila
AU - Jayarathna, Lakmal
AU - Ranasinghe, C. S.
AU - Vithanage, Meththika
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature B.V. 2024.
PY - 2024/9
Y1 - 2024/9
N2 - This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, − 1.06, − 0.84, − 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.
AB - This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, − 1.06, − 0.84, − 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.
KW - Bioavailability
KW - Composting
KW - Microplastic
KW - Municipal solid waste
KW - Plastic
KW - Trace metal
UR - http://www.scopus.com/inward/record.url?scp=85198449510&partnerID=8YFLogxK
U2 - 10.1007/s10653-024-02081-5
DO - 10.1007/s10653-024-02081-5
M3 - Article
C2 - 39002030
AN - SCOPUS:85198449510
SN - 0269-4042
VL - 46
JO - Environmental Geochemistry and Health
JF - Environmental Geochemistry and Health
IS - 9
M1 - 306
ER -