On the solution to the Riemann problem for the compressible duct flow

Nikolai Andrianov, Gerald Warnecke

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

64 Citationer (Scopus)

Abstrakt

The quasi-one-dimensional Euler equations in a duct of variable cross section form probably one of the simplest nonconservative systems. We consider the Riemann problem for it and discuss its properties. In particular, for some initial conditions, the solution to the Riemann problem appears to be nonunique. In order to rule out the nonphysical solutions, we provide two-dimensional computations of the Euler equations in a duct of corresponding geometry and compare them with the one-dimensional (1D) results. Then, the physically relevant 1D solutions satisfy a kind of entropy rate admissibility criterion.

OriginalsprogEngelsk
Sider (fra-til)878-901
Antal sider24
TidsskriftSIAM Journal on Applied Mathematics
Vol/bind64
Udgave nummer3
DOI
StatusUdgivet - 2004
Udgivet eksterntJa

Programområde

  • Programområde 2: Vandressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'On the solution to the Riemann problem for the compressible duct flow'. Sammen danner de et unikt fingeraftryk.

Citationsformater