Millennial-scale sea-level control on avulsion events on the Amazon Fan

Mark Maslin, Paul C. Knutz, Tony Ramsay

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

30 Citationer (Scopus)


The Late Quaternary Amazon deep-sea fan provides a modern analogue to ancient fan systems containing coarse-grained hydrocarbon reservoirs. Sand lenses deposited within the Amazon Fan, due to abrupt shifts in channel pathways called avulsion events, were drilled as part of ODP Leg 155. The hemipelagic sediment directly on top of the avulsion sands was dated using primarily AMS radio carbon dating. This dating shows that these large sand lobes (∼1 km3) are triggered by relatively small, millennial scale changes in marine transgression and regression (±5-10 m). Relative sea level also controls the architecture of the Channel-levee distributive systems within the Amazon Fan. For example prior to 22 k calendar years BP there is a tripartite channel system. After 22 ka there is only one active Channel-levee system. Transitions between the multi-channel and single channel configurations are related to variations in the volume of sediment supply resulting in aggradation or erosion of channel floor and levee growth in the canyon-channel transition area. The sensitivity of the Amazon deep-sea Fan sedimentation to relatively small changes in sea level supports one of the central assumptions of the theory of Sequence Stratigraphy. In addition this study demonstrates how traps for hydrocarbons may have been formed in ancient fan systems.

Sider (fra-til)3338-3345
Antal sider8
TidsskriftQuaternary Science Reviews
Udgave nummer23-24
StatusUdgivet - dec. 2006
Udgivet eksterntJa


  • Programområde 5: Natur og klima


Dyk ned i forskningsemnerne om 'Millennial-scale sea-level control on avulsion events on the Amazon Fan'. Sammen danner de et unikt fingeraftryk.