TY - JOUR
T1 - Metallogeny of Greenland
AU - Kolb, Jochen
AU - Keiding, Jakob K.
AU - Steenfelt, Agnete
AU - Secher, Karsten
AU - Keulen, Nynke
AU - Rosa, Diogo
AU - Stensgaard, Bo M.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Greenland is the largest island on Earth, with 80% of its area covered by a thick ice sheet. The coastal areas are underlain by variable rocks ranging from Eoarchean to the most recent ages. Greenland has a mineral exploration tradition since its colonization in the 18th century, and mining of cryolite started in 1854. Since the 1960s, the country is explored systematically for various commodities, which however resulted only in limited mining activity in only a few successful mines. Most exploration has been based on prospecting followed by exploration around the exposed mineralization.The geology from North-West Greenland along the coast to the south and along the eastern coast north to Kangerlussuaq Fjord is dominated by deeply eroded Archean and Paleoproterozoic rocks. The metallogeny is largely controlled by mid crustal processes and the preservation potential of mineralization in the deeper crust. Significant mineralization is found in orthomagmatic Ni-PGE-Au sulfide and Cr- or Fe-Ti-V oxide systems and hypozonal orogenic gold systems in major shear zones. Interestingly, the ultramafic units of the orthomagmatic systems locally host gemstone-quality corundum mineralization. Graphite mineralization occurs in amphibolite-granulite facies metasedimentary units and in shear zones in Paleoproterozoic orogens. Mesozonal orogenic gold and iron ore in banded iron formation are restricted to localized lower metamorphic grade areas along the west coast. Larger units of preserved Paleoproterozoic metasedimentary and metavolcanic rocks are restricted to South, central East and central West Greenland, where base metal mineralization formed the significant Zn-Pb Black Angel deposit.Widespread sedimentation and localized mafic magmatism started in the late Paleoproterozoic in various continental to shallow marine basins and lasted with interruptions until the start of the Caledonian Orogeny. These late Paleoproterozoic to early Paleozoic sedimentary rocks are variably deformed and metamorphosed by subsequent orogeny and mainly preserved in northern and eastern Greenland. They host stratiform sedimentary base metal mineralization of only limited known extent, except the sedimentary exhalative Zn-Pb Citronen deposit in central North Greenland. The Caledonian and subsequently the Ellesmerian orogens affected the eastern and northern Laurentian margin, respectively. Mineral systems of only limited known extent related to this orogeny are Mississippi Valley Type Zn-Pb in the Ellesmerian foreland, mesozonal orogenic gold in Caledonian shear zones and magmatic-hydrothermal W-Sb ± Au ± Cu systems in and adjacent to Caledonian granites. Renewed and almost continuous sedimentation occurred from the Devonian until Paleogene in eastern Greenlandic basins. The sedimentary units host stratiform sedimentary base metal mineralization of only small known magnitude. The Paleogene in eastern and central West Greenland is characterized by widespread mafic-ultramafic magmatism, forming flood basalt and a series of intrusions in East Greenland. Nickel-sulfide mineralization is locally hosted by the mafic-ultramafic rocks in central West Greenland, whereas eastern Greenlandic mafic and felsic intrusions host significant orthomagmatic PGE-Au mineralization in Skaergaard, and magmatic hydrothermal Mo-Au-Ag mineralization in Malmbjerg and Flammefjeld.Western and southern Greenland was a relative stable shield from Paleoproterozoic times and is intruded by localized Meso- and Neoproterozoic alkaline and carbonatite suites, which form part of a larger Mesoproterozoic rift only in South Greenland. These intrusions host locally significant REE-Nb-Ta-U-Zn-Be in Kvanefjeld, Kringlerne and Motzfeldt deposits of South Greenland and the southern West Greenlandic Sarfartoq deposit. Diamond mineralization is spatially associated with the alkaline and carbonatite intrusions in southern West Greenland.The long and complex geological evolution recorded in Greenland appears to be in contrast with only few examples of successful mineral exploration and mining. Numerous mineral deposits are developed in neighboring Arctic countries, making the remote Arctic setting an unlikely single argument for the situation. Geological knowledge is still relatively basic for many parts of Greenland and modern geophysical and geochemical data is often only available at a regional scale, which makes knowledge- and mineral system-driven exploration difficult and costly. The review of the Greenlandic metallogeny in this paper, however, clearly shows the enormous potential for finding ores in a wide variety of settings.
AB - Greenland is the largest island on Earth, with 80% of its area covered by a thick ice sheet. The coastal areas are underlain by variable rocks ranging from Eoarchean to the most recent ages. Greenland has a mineral exploration tradition since its colonization in the 18th century, and mining of cryolite started in 1854. Since the 1960s, the country is explored systematically for various commodities, which however resulted only in limited mining activity in only a few successful mines. Most exploration has been based on prospecting followed by exploration around the exposed mineralization.The geology from North-West Greenland along the coast to the south and along the eastern coast north to Kangerlussuaq Fjord is dominated by deeply eroded Archean and Paleoproterozoic rocks. The metallogeny is largely controlled by mid crustal processes and the preservation potential of mineralization in the deeper crust. Significant mineralization is found in orthomagmatic Ni-PGE-Au sulfide and Cr- or Fe-Ti-V oxide systems and hypozonal orogenic gold systems in major shear zones. Interestingly, the ultramafic units of the orthomagmatic systems locally host gemstone-quality corundum mineralization. Graphite mineralization occurs in amphibolite-granulite facies metasedimentary units and in shear zones in Paleoproterozoic orogens. Mesozonal orogenic gold and iron ore in banded iron formation are restricted to localized lower metamorphic grade areas along the west coast. Larger units of preserved Paleoproterozoic metasedimentary and metavolcanic rocks are restricted to South, central East and central West Greenland, where base metal mineralization formed the significant Zn-Pb Black Angel deposit.Widespread sedimentation and localized mafic magmatism started in the late Paleoproterozoic in various continental to shallow marine basins and lasted with interruptions until the start of the Caledonian Orogeny. These late Paleoproterozoic to early Paleozoic sedimentary rocks are variably deformed and metamorphosed by subsequent orogeny and mainly preserved in northern and eastern Greenland. They host stratiform sedimentary base metal mineralization of only limited known extent, except the sedimentary exhalative Zn-Pb Citronen deposit in central North Greenland. The Caledonian and subsequently the Ellesmerian orogens affected the eastern and northern Laurentian margin, respectively. Mineral systems of only limited known extent related to this orogeny are Mississippi Valley Type Zn-Pb in the Ellesmerian foreland, mesozonal orogenic gold in Caledonian shear zones and magmatic-hydrothermal W-Sb ± Au ± Cu systems in and adjacent to Caledonian granites. Renewed and almost continuous sedimentation occurred from the Devonian until Paleogene in eastern Greenlandic basins. The sedimentary units host stratiform sedimentary base metal mineralization of only small known magnitude. The Paleogene in eastern and central West Greenland is characterized by widespread mafic-ultramafic magmatism, forming flood basalt and a series of intrusions in East Greenland. Nickel-sulfide mineralization is locally hosted by the mafic-ultramafic rocks in central West Greenland, whereas eastern Greenlandic mafic and felsic intrusions host significant orthomagmatic PGE-Au mineralization in Skaergaard, and magmatic hydrothermal Mo-Au-Ag mineralization in Malmbjerg and Flammefjeld.Western and southern Greenland was a relative stable shield from Paleoproterozoic times and is intruded by localized Meso- and Neoproterozoic alkaline and carbonatite suites, which form part of a larger Mesoproterozoic rift only in South Greenland. These intrusions host locally significant REE-Nb-Ta-U-Zn-Be in Kvanefjeld, Kringlerne and Motzfeldt deposits of South Greenland and the southern West Greenlandic Sarfartoq deposit. Diamond mineralization is spatially associated with the alkaline and carbonatite intrusions in southern West Greenland.The long and complex geological evolution recorded in Greenland appears to be in contrast with only few examples of successful mineral exploration and mining. Numerous mineral deposits are developed in neighboring Arctic countries, making the remote Arctic setting an unlikely single argument for the situation. Geological knowledge is still relatively basic for many parts of Greenland and modern geophysical and geochemical data is often only available at a regional scale, which makes knowledge- and mineral system-driven exploration difficult and costly. The review of the Greenlandic metallogeny in this paper, however, clearly shows the enormous potential for finding ores in a wide variety of settings.
KW - Economic geology
KW - Exploration
KW - Greenland
KW - Mineral deposit
KW - MiMa
KW - Forsyningssikkerhed
KW - MiMa
KW - Forsyningssikkerhed
UR - http://www.scopus.com/inward/record.url?scp=84968834227&partnerID=8YFLogxK
U2 - 10.1016/j.oregeorev.2016.03.006
DO - 10.1016/j.oregeorev.2016.03.006
M3 - Article
SN - 0169-1368
VL - 78
SP - 493
EP - 555
JO - Ore Geology Reviews
JF - Ore Geology Reviews
ER -