Machine learning of dual porosity model closures from discrete fracture simulations

Nikolai Andrianov, Hamidreza M. Nick

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

7 Citationer (Scopus)


Fine-scale discrete fracture simulations provide a natural means to quantify the matrix-fracture fluxes and to specify reference solutions for upscaling approaches such as dual porosity/dual permeability models. Since typically the fine-scale simulations are computationally demanding, and the fractured reservoirs are highly heterogeneous, it is desirable to parametrize the fracture geometry and to obtain coarse-scale model closures using precomputed fine-scale results. We show that this can be done for the case of two-dimensional geometries and compressible single-phase flows. Specifically, a set of parameters linked to a coarse-scale grid block can be mapped to the underlying fracture geometry via a convolutional neural network. In particular, if a matrix-fracture transfer function can be parametrized with a number of parameters spatially varying on a coarse scale, the shape of the transfer function per grid block can be learned from fine-scale simulations.

Antal sider17
TidsskriftAdvances in Water Resources
StatusUdgivet - jan. 2021
Udgivet eksterntJa


  • Programområde 3: Energiressourcer


Dyk ned i forskningsemnerne om 'Machine learning of dual porosity model closures from discrete fracture simulations'. Sammen danner de et unikt fingeraftryk.