Improvement in MRS parameter estimation by joint and laterally constrained inversion of MRS and TEM data

Ahmad A. Behroozmand, Esben Auken, Gianluca Fiandaca, Anders Vest Christiansen

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

51 Citationer (Scopus)

Abstrakt

We developed a new scheme for joint and laterally constrained inversion (LCI) of magnetic resonance sounding (MRS) data and transient electromagnetic (TEM) data, which greatly improves the estimation of the MRS model parameters. During the last few decades, electrical and electromagnetic methods have been widely used for groundwater investigation, but they suffer from some inherent limitations; for example, equivalent layer sequences. Furthermore, the water content information is only empirically correlated to resistivity of the formation. MRS is a noninvasive geophysical technique that directly quantifies the water content distribution from surface measurements. The resistivity information of the subsurface is obtained from a complementary geophysical method such as TEM or DC resistivity methods. The conventional inversion of MRS data assumes the resulting resistivity structure to be correct and considers a constant MRS kernel through the inversion. We found that this assumption may introduce an error to the forward modeling and consequently could result in erroneous parameter estimations in the inversion process. We investigated the advantage of TEM for the joint inversion compared to DC resistivity. A fast and numerically efficient MRS forward routine made it possible to invert the MRS and TEM data sets simultaneously along profiles. Furthermore, by application of lateral constraints on the model parameters, lateral smooth 2D model sections could be be obtained. The simultaneous inversion for resistivity and MRS parameters led to a more reliable and robust estimation of all parameters, and the MRS data diminished the range of equivalent resistivity models. We examined the approach through synthetic data and a field example in Denmark where good agreement with borehole data was demonstrated with clear correlation between the relaxation time T2 * and the grain size distribution of a sandy aquifer.

OriginalsprogEngelsk
Sider (fra-til)WB191-WB200
Antal sider20
TidsskriftGeophysics
Vol/bind77
Udgave nummer4
DOI
StatusUdgivet - jul. 2012

Programområde

  • Programområde 2: Vandressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'Improvement in MRS parameter estimation by joint and laterally constrained inversion of MRS and TEM data'. Sammen danner de et unikt fingeraftryk.

Citationsformater