Graptolite reflectance anomaly

Xiaowei Zheng, Niels H. Schovsbo, Qingyong Luo, Jia Wu, Ningning Zhong, Fariborz Goodarzi, Hamed Sanei

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

Abstrakt

Thermal maturation is traditionally evaluated based on vitrinite reflectance (VRo) measurements and its relationship to oil and gas generation and diagenetic transformation are ingrained in many basin modeling tools. However, vitrinite derives from higher land plants that evolved in Devonian. In pre-Devonian rocks graptolite reflectance (GR) is the most significant thermal index for establishing thermal maturation. Currently, conversions of GR to VRo equivalent rely on several established linear relationships. This study investigates a continuous thermal evolution of GR during artificial maturation of the Lower Ordovician (Tremadocian) Alum Shale of Estonia. We observe an anomalous breakdown in the gradient of GR versus thermal maturity. The anomaly trend is characterized as a suppressed GR gradient throughout the entire gas window (VRo: 1.0–2.0%). We attribute the suppressed measured GR trend to surface imperfection caused by the generation and evasion of hydrocarbon gases that generate nano-porosity vacuolation of the graptolite tissues. After the gas window, GR resumes its increasing trend with a similar gradient as observed in the pre-gas window, due to continued aromatization and condensation of the organic molecules. The GR anomaly indicates a potential underestimation of thermal maturity up to 0.52%VRo when applying a linear conversion formula between random GR and VRo directly. Therefore, a significant maturity correction should be applied to all legacy GR-based maturity measurements that indicate a gas or post-gas maturity rank.

OriginalsprogEngelsk
Artikelnummer104072
Antal sider7
TidsskriftInternational Journal of Coal Geology
Vol/bind261
DOI
StatusUdgivet - 1 sep. 2022

Programområde

  • Programområde 3: Energiressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'Graptolite reflectance anomaly'. Sammen danner de et unikt fingeraftryk.

Citationsformater