Garbage to Gains: The role of biochar in sustainable soil quality improvement, arsenic remediation, and crop yield enhancement

Abhishek Kumar, Mala Kumari, Uzma Azim, Meththika Vithanage, Tanushree Bhattacharya

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

19 Citationer (Scopus)

Resumé

Threats of soil quality deterioration and metal pollution have inflicted several parts of the world, apart from the need for surplus crop production. The investigation used biochar prepared from waste biomasses such as wheat and rice straw, kitchen waste, leaf litter, Lantana camara, orange peel, and walnut shell to improve soil quality, reduce As pollution, and enhance plant growth. Biochars were amended at doses of 0%, 2.5%, 5%, and 7.5% and conditioned for 3 months. At a 7.5% dose, the maximum improvements in cation exchange capacity (a 62% increase), anion exchange capacity (a two-fold increase), bulk density (a 31% decrease), porosity (a 32% increase), water holding capacity (an 86% increase), soil respiration (a 32% increase), total carbon (a two-and-a-half-fold increase), total nitrogen (an eleven-fold increase), total phosphorus (3 times rise), total potassium (a two-and-a-half-fold increase), mobile As (a 38% decrease), leachable As (a 53% decrease), and bio-available As (a 56% decrease) were observed. Further, pot experiments revealed augmented biomass growth (61% and 177%), increased length (71% and 209%), and decreased As accumulation (56% and 55%) in the above-ground parts of Bengal gram and coriander plants, respectively. Therefore, the application of biochar was found to enhance the physico-chemical properties of soil, reduce As contamination levels, and improve crop growth. The study recommends using waste biomasses to prepare eco-friendly biochars, which could contribute to advancing sustainable agriculture and the circular economy.

OriginalsprogEngelsk
Artikelnummer140417
TidsskriftChemosphere
Vol/bind344
DOI
StatusUdgivet - dec. 2023
Udgivet eksterntJa

Programområde

  • Programområde 2: Vandressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'Garbage to Gains: The role of biochar in sustainable soil quality improvement, arsenic remediation, and crop yield enhancement'. Sammen danner de et unikt fingeraftryk.

Citationsformater