Formation and evolution of secondary phases and surface altered layers during borosilicate glass corrosion in pore water

Kaifeng Wang, Yang Chen, Nathaniel Findling, Frederic Charlot, Laurent Charlet, Jiliang Liu, Zhentao Zhang

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

Resumé

The emergent secondary phases and surface altered layer (SAL) during the aqueous corrosion of borosilicate glass have a great impact on its chemical durability. However, the formation and evolution of these structures are still unclear. Here, by studying the borosilicate glass altered at 90 °C in pore water, the water in pore space between glass powders, the formation of secondary phases could follow two ways: 1. the consumption of aqueous ions forms analcime, zeolite, calcium silicate and barite at the surface of glass; 2. the reorganization of silica aggregates leads to smectite within the SAL. Small-angle X-ray scattering and cross-sectional scanning electron microscopy results show that the release of soluble elements and the formation of smectite within the SAL significantly increase the porosity of SAL. Furthermore, the layer containing smectite reorganizes inwardly and the crystallinity of smectite is gradually increased over time. The observations of transmission electron microscopy reveal that the dissolution of glass potentially goes through an interface-coupled dissolution-reprecipitation process.

OriginalsprogEngelsk
Artikelnummer26
Antal sider10
Tidsskriftnpj Materials Degradation
Vol/bind8
Udgave nummer1
DOI
StatusUdgivet - 2024

Programområde

  • Programområde 2: Vandressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'Formation and evolution of secondary phases and surface altered layers during borosilicate glass corrosion in pore water'. Sammen danner de et unikt fingeraftryk.

Citationsformater