TY - JOUR
T1 - Experimental study of secondary and tertiary modes combined low salinity water and polymer flooding in sandstone porous media
AU - Mokhtari, Farzad
AU - Riahi, Siavash
AU - Rostami, Behzad
N1 - Publisher Copyright:
© 2022 Canadian Society for Chemical Engineering.
PY - 2023/2
Y1 - 2023/2
N2 - Combined low salinity water (LSW) and polymer (LSP) flooding is the most attractive method of enhanced oil recovery (EOR). Considerable research has investigated effective mechanisms of LSP flooding. In this study, 10 laboratory core flood tests were carried out to evaluate the effects of LSW injection into samples without any clay particles, the timing of LSW injection, and the advantages of adding polymer to the injection water for EOR. Secondary and tertiary LSW injections were performed on sandpack samples with different wettability states and water salinity. Tertiary LSW injection after secondary synthetic seawater (SSW) injection in oil-wet samples resulted in 13% more oil recovery, while the water-wet sample showed no effect on the oil recovery. Secondary LSW injection in oil-wet porous media improved oil recovery by 8% of the original oil in place (OOIP) more than secondary SSW injection. Tertiary LSP flooding after secondary SSW injection in the oil-wet sample provided a recovery of 67.3% of OOIP, while secondary LSW injection followed by tertiary LSP flooding yielded the maximum ultimate oil recovery of about 77% of OOIP. The findings showed that the positive EOR effects of LSW and LSP flooding were the results of wettability alteration, pH increase, improved mobility ratio, better sweep efficiency, and oil redistribution. In addition, results showed that wettability alteration is possible without the presence of clay particles. The findings of this study can help for a better understanding of fluid propagation through the porous media and an investigation of delays in reaching ultimate oil recovery.
AB - Combined low salinity water (LSW) and polymer (LSP) flooding is the most attractive method of enhanced oil recovery (EOR). Considerable research has investigated effective mechanisms of LSP flooding. In this study, 10 laboratory core flood tests were carried out to evaluate the effects of LSW injection into samples without any clay particles, the timing of LSW injection, and the advantages of adding polymer to the injection water for EOR. Secondary and tertiary LSW injections were performed on sandpack samples with different wettability states and water salinity. Tertiary LSW injection after secondary synthetic seawater (SSW) injection in oil-wet samples resulted in 13% more oil recovery, while the water-wet sample showed no effect on the oil recovery. Secondary LSW injection in oil-wet porous media improved oil recovery by 8% of the original oil in place (OOIP) more than secondary SSW injection. Tertiary LSP flooding after secondary SSW injection in the oil-wet sample provided a recovery of 67.3% of OOIP, while secondary LSW injection followed by tertiary LSP flooding yielded the maximum ultimate oil recovery of about 77% of OOIP. The findings showed that the positive EOR effects of LSW and LSP flooding were the results of wettability alteration, pH increase, improved mobility ratio, better sweep efficiency, and oil redistribution. In addition, results showed that wettability alteration is possible without the presence of clay particles. The findings of this study can help for a better understanding of fluid propagation through the porous media and an investigation of delays in reaching ultimate oil recovery.
KW - EOR
KW - low salinity polymer flooding
KW - low salinity water injection
UR - http://www.scopus.com/inward/record.url?scp=85131322415&partnerID=8YFLogxK
U2 - 10.1002/cjce.24468
DO - 10.1002/cjce.24468
M3 - Article
AN - SCOPUS:85131322415
SN - 0008-4034
VL - 101
SP - 1095
EP - 1108
JO - Canadian Journal of Chemical Engineering
JF - Canadian Journal of Chemical Engineering
IS - 2
ER -