TY - JOUR
T1 - Deglacial to Mid Holocene environmental conditions on the northeastern Greenland shelf, western Fram Strait
AU - Hansen, Katrine Elnegaard
AU - Lorenzen, Jesper
AU - Davies, Joanna
AU - Wacker, Lukas
AU - Pearce, Christof
AU - Seidenkrantz, Marit-Solveig
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/10/1
Y1 - 2022/10/1
N2 - The western Fram Strait is the only deep-water gateway connecting the Arctic Ocean and North Atlantic. Consequently, today, the western Fram Strait and the Northeast Greenland shelf receive cold, low saline Polar and Arctic Atlantic waters from the Arctic Ocean incorporated in the East Greenland Current, together with warmer, saline recirculated Atlantic Water masses derived from the West Spitsbergen Current. We present a multiproxy study (grain size distribution, XRF core scans, and benthic foraminiferal assemblages) based on the lower part of the radiocarbon dated marine sediment core DA17-NG-ST03-039G, covering the period from 13.3 to 3.9 cal ka BP. We reconstruct the deglacial conditions of the Northeast Greenland shelf together with Early to Mid Holocene fluctuations in subsurface Atlantic Water and Polar Water advection. The results show that the outer Northeast Greenland shelf was deglaciated and marine conditions were established prior to c. 13.3 cal ka BP. At this time, our data show Atlantic Water masses flowing beneath an extensive sea-ice cover in a glaciomarine setting, potentially related to the Bølling-Allerød warm period. Around 12.9 cal ka BP, the onset of high surface and bottom water productivity may be associated with the Younger Dryas onset. This was followed by a transition towards warmer bottom and subsurface water conditions from c. 11.7 until 10.2 cal ka BP caused by enhanced advection of Atlantic-derived water masses. A cold period with marginal ice zone conditions and enhanced East Greenland Current incursion is evident from 10.2 to 9.4 cal ka BP, succeeded by harsher sea-ice conditions and Atlantic Water inflow, prevailing until c. 7.5 cal ka BP. Holocene Thermal Maximum conditions, characterized by high surface and subsurface water productivity, were promoted by enhanced Atlantic Water flow to the shelf from c. 7.5 to 6.7 cal ka BP. In contrast, the transition towards a cold period with increased drift-ice transport via a strong East Greenland Current is recorded from c. 6.2 cal ka BP and to the end of our record at 3.9 cal ka BP; it was associated with the onset of the Neoglaciation.
AB - The western Fram Strait is the only deep-water gateway connecting the Arctic Ocean and North Atlantic. Consequently, today, the western Fram Strait and the Northeast Greenland shelf receive cold, low saline Polar and Arctic Atlantic waters from the Arctic Ocean incorporated in the East Greenland Current, together with warmer, saline recirculated Atlantic Water masses derived from the West Spitsbergen Current. We present a multiproxy study (grain size distribution, XRF core scans, and benthic foraminiferal assemblages) based on the lower part of the radiocarbon dated marine sediment core DA17-NG-ST03-039G, covering the period from 13.3 to 3.9 cal ka BP. We reconstruct the deglacial conditions of the Northeast Greenland shelf together with Early to Mid Holocene fluctuations in subsurface Atlantic Water and Polar Water advection. The results show that the outer Northeast Greenland shelf was deglaciated and marine conditions were established prior to c. 13.3 cal ka BP. At this time, our data show Atlantic Water masses flowing beneath an extensive sea-ice cover in a glaciomarine setting, potentially related to the Bølling-Allerød warm period. Around 12.9 cal ka BP, the onset of high surface and bottom water productivity may be associated with the Younger Dryas onset. This was followed by a transition towards warmer bottom and subsurface water conditions from c. 11.7 until 10.2 cal ka BP caused by enhanced advection of Atlantic-derived water masses. A cold period with marginal ice zone conditions and enhanced East Greenland Current incursion is evident from 10.2 to 9.4 cal ka BP, succeeded by harsher sea-ice conditions and Atlantic Water inflow, prevailing until c. 7.5 cal ka BP. Holocene Thermal Maximum conditions, characterized by high surface and subsurface water productivity, were promoted by enhanced Atlantic Water flow to the shelf from c. 7.5 to 6.7 cal ka BP. In contrast, the transition towards a cold period with increased drift-ice transport via a strong East Greenland Current is recorded from c. 6.2 cal ka BP and to the end of our record at 3.9 cal ka BP; it was associated with the onset of the Neoglaciation.
KW - Deglacial
KW - Foraminifers
KW - Grain size
KW - Greenland
KW - Holocene
KW - Micropaleontology
KW - Palaeoceanography
KW - Westwind Trough
KW - X-ray fluorescence
UR - http://www.scopus.com/inward/record.url?scp=85136461421&partnerID=8YFLogxK
U2 - 10.1016/j.quascirev.2022.107704
DO - 10.1016/j.quascirev.2022.107704
M3 - Article
AN - SCOPUS:85136461421
SN - 0277-3791
VL - 293
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
M1 - 107704
ER -