Resumé
The Nova Scotia continental margin off eastern Canada marks a transition from a volcanic to a nonvolcanic style of rifting. The northern (nonvolcanic) segment of the margin was studied by a 490-km-long refraction seismic line with dense air gun shots, coincident with previous deep reflection profiles. A P wave velocity model was developed from forward and inverse modeling of the wide-angle data from 19 ocean bottom seismometers and coincident normal incidence reflection profiles. The continental crust has a maximum thickness of 36 km and is divided into three layers with velocities of 5.7-6.9 km/s. Crustal thinning down to 3 km occurs in a 180-km-wide zone and the sediment cover in this area is up to 15 km thick. Farther seaward, a 150-km-wide transition zone is observed with a 5-km-thick lower layer (7.2-7.6 km/s) interpreted as partially serpentinized mantle. At the landward end, this layer is overlain by highly altered continental crust (5.4 km/s) extending up to the seaward limit of the Jurassic salt province. Farther seaward, the upper layer is interpreted as exhumed and highly serpentinized mantle (5.1 km/s) separated from the lower layer by subhorizontal reflectivity, which probably represents a serpentinization front. Oceanic crustal thickness is 4 km with layer 2 velocities of 4.6-5.0 km/s. Layer 3 velocities of 6.4-6.55 km/s are lower than typical lower oceanic crust velocities but consistent with a low magma supply and increased tectonism as observed on the reflection profile. This reduced magma production might be related to the proximity of the Newfoundland transform margin.
Originalsprog | Engelsk |
---|---|
Artikelnummer | B09102 |
Antal sider | 19 |
Tidsskrift | Journal of Geophysical Research: Solid Earth |
Vol/bind | 109 |
Udgave nummer | B9 |
DOI | |
Status | Udgivet - 10 sep. 2004 |
Udgivet eksternt | Ja |
Programområde
- Programområde 3: Energiressourcer