Combining the triangle method with thermal inertia to estimate regional evapotranspiration - Applied to MSG-SEVIRI data in the Senegal River basin

Simon Stisen, Inge Sandholt, Anette Norgaard, Rasmus Fensholt, Karsten Høgh Jensen

Publikation: Bidrag til tidsskriftArtikelForskningpeer review

224 Citationer (Scopus)

Abstrakt

Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved by utilizing the high temporal resolution of the geostationary MSG-SEVIRI sensor. With 15 min acquisition intervals, the MSG-SEVIRI data allow for a precise estimation of the morning rise in land surface temperature which is a strong proxy for total daytime sensible heat fluxes. Combining the diurnal change in surface temperature, dT s with an interpretation of the triangular shaped dT s - NDVI space allows for a direct estimation of evaporative fraction. The mean daytime energy available for evapotranspiration (R n - G) is estimated using several remote sensors and limited ancillary data. Finally regional estimates of actual evapotranspiration are made by combining evaporative fraction and available energy estimates. The estimated evaporative fraction (EF) and actual evapotranspiration (ET) for the Senegal River basin have been validated against field observations for the rainy season 2005. The validation results showed low biases and RMSE and R 2 of 0.13 [-] and 0.63 for EF and RMSE of 41.45 W m - 2 and R 2 of 0.66 for ET.

OriginalsprogEngelsk
Sider (fra-til)1242-1255
Antal sider14
TidsskriftRemote Sensing of Environment
Vol/bind112
Udgave nummer3
DOI
StatusUdgivet - 18 mar. 2008
Udgivet eksterntJa

Programområde

  • Programområde 2: Vandressourcer

Fingeraftryk

Dyk ned i forskningsemnerne om 'Combining the triangle method with thermal inertia to estimate regional evapotranspiration - Applied to MSG-SEVIRI data in the Senegal River basin'. Sammen danner de et unikt fingeraftryk.

Citationsformater