@article{a3706da26eda43e581e6ec2521f65053,
title = "Calving controlled by melt-under-cutting: Detailed calving styles revealed through time-lapse observations",
abstract = "We present a highly detailed study of calving dynamics at Tunabreen, a tidewater glacier in Svalbard. A time-lapse camera was trained on the terminus and programmed to capture images every 3 seconds over a 28-hour period in August 2015, producing a highly detailed record of 34 117 images from which 358 individual calving events were distinguished. Calving activity is characterised by frequent events (12.8 events h-1) that are small relative to the spectrum of calving events observed, demonstrating the prevalence of small-scale calving mechanisms. Five calving styles were observed, with a high proportion of calving events (82%) originating at, or above, the waterline. The tidal cycle plays a key role in the timing of calving events, with 68% occurring on the falling limb of the tide. Calving activity is concentrated where meltwater plumes surface at the glacier front, and a ~ 5 m undercut at the base of the glacier suggests that meltwater plumes encourage melt-under-cutting. We conclude that frontal ablation at Tunabreen may be paced by submarine melt rates, as suggested from similar observations at glaciers in Svalbard and Alaska. Using submarine melt rate to calculate frontal ablation would greatly simplify estimations of tidewater glacier losses in prognostic models.",
keywords = "Arctic glaciology, glacier calving, ice dynamics, ice/ocean interactions",
author = "Penelope How and Schild, {Kristin M.} and Benn, {Douglas I.} and Riko Noormets and Nina Kirchner and Adrian Luckman and Doroth{\'e}e Vallot and Hulton, {Nicholas R.J.} and Chris Borstad",
note = "Funding Information: This work is affiliated with the CRIOS project (Calving Rates and Impact On Sea Level), which was supported by the Conoco Phillips-Lundin Northern Area Program. PH is funded by a NERC PhD studentship (reference number 1396698). The TanDEM-X DEM data were kindly provided by DLR through the Intermediate DEM opportunity (project IDEM-GLAC0213), and TerraSAR-X data were provided by DLR project number OCE1503. The fieldwork associated with this work would not have been possible without the logistical support provided by the University Centre in Svalbard Tech and Logistics team. We greatly acknowledge Alex Hart and the GeoSciences Mechanical Workshop at the University of Edinburgh for manufacturing the timelapse camera enclosure that was used in this study. We would also like to thank Jack Kohler and Airlift AS for offering an opportunistic flight over the field site, and Anne Flink, Oscar Fransner, and Richard Delf for their assistance in the field. And finally many thanks to the scientific editor, Toby Meierbachtol, and Timothy Bartholomaus and one anonymous reviewer for their insightful and constructive feedback on this manuscript. Publisher Copyright: Copyright {\textcopyright} The Author(s) 2019 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited..",
year = "2019",
month = apr,
day = "1",
doi = "10.1017/aog.2018.28",
language = "English",
volume = "60",
pages = "20--31",
journal = "Annals of Glaciology",
issn = "0260-3055",
publisher = "Cambridge University Press",
number = "78",
}