TY - JOUR
T1 - Biodegradation of trace sulfonamide antibiotics accelerated by substrates across oxic to anoxic conditions during column infiltration experiments
AU - Ma, Yunjie
AU - Ma, Meng
AU - Palomo, Alejandro
AU - Sun, Yuqin
AU - Modrzynski, Jakub J.
AU - Aamand, Jens
AU - Zheng, Yan
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/8/15
Y1 - 2023/8/15
N2 - Frequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes. This study investigated influence of substrates and redox evolution along infiltration path on biotransformation of sulfonamides. Eight sand columns (length: 28 cm) with a riverbed sediment layer at 3–8 cm were fed by groundwater-sourced tap water spiked with 1 μg/L of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX) each, with or without amendments of dissolved organic carbon (5 mg-C/L of 1:1 yeast and humics) or ammonium (5 mg-N/L). Two flow rates were tested over 120 days (0.5 mL/min and 0.1 mL/min). Iron-reducing conditions persisted in all columns for 27 days during the initial high flow period due to respiration of sediment organics, evolving to less reducing conditions until the subsequent low flow period to resume more reducing conditions. With surplus substrates, the spatial and temporal patterns of redox conditions differentiated among columns. The removal of SDZ and SMZ in effluents was usually low (15 ± 11%) even with carbon addition (14 ± 9%), increasing to 33 ± 23% with ammonium addition. By contrast, SMX removal was higher and more consistent among columns (46 ± 21%), with the maximum of 64 ± 9% under iron-reducing conditions. When sulfonamide removal was compared between columns for the same redox zones during infiltration, their enhancements were always associated with the availability of dissolved or particulate substrates, suggesting co-metabolism. Manipulation of the exposure time to optimal redox conditions with substrate amendments, rather than to simply prolong the overall residence time, is recommended for nature-based solutions to tackle target antibiotics.
AB - Frequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes. This study investigated influence of substrates and redox evolution along infiltration path on biotransformation of sulfonamides. Eight sand columns (length: 28 cm) with a riverbed sediment layer at 3–8 cm were fed by groundwater-sourced tap water spiked with 1 μg/L of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX) each, with or without amendments of dissolved organic carbon (5 mg-C/L of 1:1 yeast and humics) or ammonium (5 mg-N/L). Two flow rates were tested over 120 days (0.5 mL/min and 0.1 mL/min). Iron-reducing conditions persisted in all columns for 27 days during the initial high flow period due to respiration of sediment organics, evolving to less reducing conditions until the subsequent low flow period to resume more reducing conditions. With surplus substrates, the spatial and temporal patterns of redox conditions differentiated among columns. The removal of SDZ and SMZ in effluents was usually low (15 ± 11%) even with carbon addition (14 ± 9%), increasing to 33 ± 23% with ammonium addition. By contrast, SMX removal was higher and more consistent among columns (46 ± 21%), with the maximum of 64 ± 9% under iron-reducing conditions. When sulfonamide removal was compared between columns for the same redox zones during infiltration, their enhancements were always associated with the availability of dissolved or particulate substrates, suggesting co-metabolism. Manipulation of the exposure time to optimal redox conditions with substrate amendments, rather than to simply prolong the overall residence time, is recommended for nature-based solutions to tackle target antibiotics.
KW - Co-metabolism
KW - Managed aquifer recharge
KW - Nature-based solution
KW - Reclaimed water
KW - Redox condition
KW - Trace organic contaminant
UR - http://www.scopus.com/inward/record.url?scp=85162131672&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2023.120193
DO - 10.1016/j.watres.2023.120193
M3 - Article
C2 - 37327547
AN - SCOPUS:85162131672
SN - 0043-1354
VL - 242
JO - Water Research
JF - Water Research
M1 - 120193
ER -