TY - JOUR
T1 - Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data
AU - Fensholt, Rasmus
AU - Sandholt, Inge
AU - Proud, Simon R.
AU - Stisen, Simon
AU - Rasmussen, Mads Olander
N1 - Funding Information:
The study was funded by the Danish Research Councils, ESA (European Space Agency) related research, grant no. 9902490. The authors would like to thank: EUMETSAT for making the MSG toolbox available; Yves Govaerts and M. Clerici at EUMETSAT for support in relation to the SEVIRI processing; David Taylor for making his MSG data manager available, for his flexibility and always prompt replies. All MSG data ©2004 and 2005 EUMETSAT. The authors would like to thank the NASA/MODIS Land Discipline Groups for sharing the MODIS LAND data.
PY - 2010/7
Y1 - 2010/7
N2 - The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS viewing geometry on red, near-infrared (NIR) and NDVI needs to be quantified. Data from the geostationary MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor is well suited for this purpose due to the fixed position of the sensor, the spectral resolution, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible cloud cover for three consecutive years (2004-2006). An analysis covering the entire range of NDVI revealed day-to-day variations in observed MODIS NDVI of 50-60% for medium dense vegetation (NDVI ≈ 0.5) caused by variations in MODIS view zenith angles (VZAs) between nadir and the high forward-scatter view direction. Statistical analysis on red, NIR and NDVI from MODIS and MSG SEVIRI for three transects (characterized by different vegetation densities) showed that both MODIS red and NIR reflectances are highly dependant on MODIS VZA and relative azimuth angle (RAA), due to the anisotropic behaviour of red and NIR reflectances. The anisotropic reflectance in the red and NIR band was to some degree minimized by the ratioing properties of NDVI. The minimization by the NDVI normalization is very dependent on the vegetation density however, since the degree of anisotropy in red and NIR reflectances depends on the amount of vegetation present. MODIS VZA and RAA effects on NDVI were highest for medium dense vegetation (NDVI ≈0.5-0.6). The VZA and RAA effects were less for sparsely vegetated areas (NDVI ≈ 0.3-0.35) and the smallest effect on NDVI was found for dense vegetation (NDVI ≈ 0.7). These results have implications for the end users' interpretation of NDVI, and challenge the expediency of the MODIS NDVI compositing technique, which should be refined to distinguish between forward- and backward-scatter viewing direction by taking RAA into account.
AB - The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS viewing geometry on red, near-infrared (NIR) and NDVI needs to be quantified. Data from the geostationary MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor is well suited for this purpose due to the fixed position of the sensor, the spectral resolution, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible cloud cover for three consecutive years (2004-2006). An analysis covering the entire range of NDVI revealed day-to-day variations in observed MODIS NDVI of 50-60% for medium dense vegetation (NDVI ≈ 0.5) caused by variations in MODIS view zenith angles (VZAs) between nadir and the high forward-scatter view direction. Statistical analysis on red, NIR and NDVI from MODIS and MSG SEVIRI for three transects (characterized by different vegetation densities) showed that both MODIS red and NIR reflectances are highly dependant on MODIS VZA and relative azimuth angle (RAA), due to the anisotropic behaviour of red and NIR reflectances. The anisotropic reflectance in the red and NIR band was to some degree minimized by the ratioing properties of NDVI. The minimization by the NDVI normalization is very dependent on the vegetation density however, since the degree of anisotropy in red and NIR reflectances depends on the amount of vegetation present. MODIS VZA and RAA effects on NDVI were highest for medium dense vegetation (NDVI ≈0.5-0.6). The VZA and RAA effects were less for sparsely vegetated areas (NDVI ≈ 0.3-0.35) and the smallest effect on NDVI was found for dense vegetation (NDVI ≈ 0.7). These results have implications for the end users' interpretation of NDVI, and challenge the expediency of the MODIS NDVI compositing technique, which should be refined to distinguish between forward- and backward-scatter viewing direction by taking RAA into account.
UR - http://www.scopus.com/inward/record.url?scp=78650117244&partnerID=8YFLogxK
U2 - 10.1080/01431160903401387
DO - 10.1080/01431160903401387
M3 - Article
AN - SCOPUS:78650117244
VL - 31
SP - 6163
EP - 6187
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
SN - 0143-1161
IS - 23
ER -