TY - JOUR
T1 - Arsenite removal in groundwater treatment plants by sequential Permanganate―Ferric treatment
AU - Ahmad, Arslan
AU - Cornelissen, Emile
AU - van de Wetering, Stephan
AU - van Dijk, Tim
AU - van Genuchten, Case
AU - Bundschuh, Jochen
AU - van der Wal, Albert
AU - Bhattacharya, Prosun
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/12
Y1 - 2018/12
N2 - The Dutch drinking water sector is actively investigating methods to reduce arsenic (As) to <1 μg/L in drinking water supply. We investigated (1) the effectiveness of sequential permanganate (MnO4¯)–ferric (Fe(III)) dosing during aeration–rapid sand filtration to achieve <1 μg/L As (2) the influence of MnO4¯–Fe(III) dosing on pre-established removal patterns of As(III), Fe(II), Mn(II) and NH4+ in rapid sand filters and (3) the influence of MnO4¯–Fe(III) dosing on the settling and molecular-scale structural properties of the filter backwash solids. We report that MnO4¯–Fe(III) dosing is an effective technique to improve arsenite [As(III)] removal at groundwater treatment plants. At a typical aeration—rapid sand filtration facility in the Netherlands effluent As concentrations of <1 μg/L were achieved with 1.2 mg/L MnO4¯–and 1.8 mg/L Fe(III). The optimized combination of MnO4¯ –and Fe(III) doses did not affect the removal efficiency of Fe(II), Mn(II) and NH4+ in rapid sand filters, however, the removal patterns of Fe(II) and Mn(II) in rapid sand filter were altered, as well as the settling behaviour of backwash solids. The characterization of backwash solids by Fe K-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) showed that the changed settling velocity of backwash solids with MnO4¯–Fe(III) in place was not due to changes in the molecular-scale structure of Fe-precipitates that constitute the major portion of the backwash solids.
AB - The Dutch drinking water sector is actively investigating methods to reduce arsenic (As) to <1 μg/L in drinking water supply. We investigated (1) the effectiveness of sequential permanganate (MnO4¯)–ferric (Fe(III)) dosing during aeration–rapid sand filtration to achieve <1 μg/L As (2) the influence of MnO4¯–Fe(III) dosing on pre-established removal patterns of As(III), Fe(II), Mn(II) and NH4+ in rapid sand filters and (3) the influence of MnO4¯–Fe(III) dosing on the settling and molecular-scale structural properties of the filter backwash solids. We report that MnO4¯–Fe(III) dosing is an effective technique to improve arsenite [As(III)] removal at groundwater treatment plants. At a typical aeration—rapid sand filtration facility in the Netherlands effluent As concentrations of <1 μg/L were achieved with 1.2 mg/L MnO4¯–and 1.8 mg/L Fe(III). The optimized combination of MnO4¯ –and Fe(III) doses did not affect the removal efficiency of Fe(II), Mn(II) and NH4+ in rapid sand filters, however, the removal patterns of Fe(II) and Mn(II) in rapid sand filter were altered, as well as the settling behaviour of backwash solids. The characterization of backwash solids by Fe K-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) showed that the changed settling velocity of backwash solids with MnO4¯–Fe(III) in place was not due to changes in the molecular-scale structure of Fe-precipitates that constitute the major portion of the backwash solids.
KW - Arsenic removal
KW - Arsenite oxidation
KW - Drinking water
KW - Groundwater treatment
KW - Permanganate
KW - Rapid sand filtration
UR - http://www.scopus.com/inward/record.url?scp=85055672970&partnerID=8YFLogxK
U2 - 10.1016/j.jwpe.2018.10.014
DO - 10.1016/j.jwpe.2018.10.014
M3 - Article
AN - SCOPUS:85055672970
SN - 2214-7144
VL - 26
SP - 221
EP - 229
JO - Journal of Water Process Engineering
JF - Journal of Water Process Engineering
ER -