TY - JOUR
T1 - An efficient hybrid scheme for fast and accurate inversion of airborne transient electromagnetic data
AU - Christiansen, Anders Vest
AU - Auken, Esben
AU - Kirkegaard, Casper
AU - Schamper, Cyril
AU - Vignoli, Giulio
N1 - Publisher Copyright:
© ASEG 2016.
PY - 2016/12
Y1 - 2016/12
N2 - Airborne transient electromagnetic (TEM) methods target a range of applications that all rely on analysis of extremely large datasets, but with widely varying requirements with regard to accuracy and computing time. Certain applications have larger intrinsic tolerances with regard to modelling inaccuracy, and there can be varying degrees of tolerance throughout different phases of interpretation. It is thus desirable to be able to tune a custom balance between accuracy and compute time when modelling of airborne datasets. This balance, however, is not necessarily easy to obtain in practice. Typically, a significant reduction in computational time can only be obtained by moving to a much simpler physical description of the system, e.g. by employing a simpler forward model. This will often lead to a significant loss of accuracy, without an indication of computational precision. We demonstrate a tuneable method for significantly speeding up inversion of airborne TEM data with little to no loss of modelling accuracy. Our approach introduces an approximation only in the calculation of the partial derivatives used for minimising the objective function, rather than in the evaluation of the objective function itself. This methodological difference is important, as it introduces no further approximation in the physical description of the system, but only in the process of iteratively guiding the inversion algorithm towards the solution. By means of a synthetic study, we demonstrate how our new hybrid approach provides inversion speed-up factors ranging from ∼3 to 7, depending on the degree of approximation. We conclude that the results are near identical in both model and data space. A field case confirms the conclusions from the synthetic examples: that there is very little difference between the full nonlinear solution and the hybrid versions, whereas an inversion with approximate derivatives and an approximate forward mapping differs significantly from the other results.
AB - Airborne transient electromagnetic (TEM) methods target a range of applications that all rely on analysis of extremely large datasets, but with widely varying requirements with regard to accuracy and computing time. Certain applications have larger intrinsic tolerances with regard to modelling inaccuracy, and there can be varying degrees of tolerance throughout different phases of interpretation. It is thus desirable to be able to tune a custom balance between accuracy and compute time when modelling of airborne datasets. This balance, however, is not necessarily easy to obtain in practice. Typically, a significant reduction in computational time can only be obtained by moving to a much simpler physical description of the system, e.g. by employing a simpler forward model. This will often lead to a significant loss of accuracy, without an indication of computational precision. We demonstrate a tuneable method for significantly speeding up inversion of airborne TEM data with little to no loss of modelling accuracy. Our approach introduces an approximation only in the calculation of the partial derivatives used for minimising the objective function, rather than in the evaluation of the objective function itself. This methodological difference is important, as it introduces no further approximation in the physical description of the system, but only in the process of iteratively guiding the inversion algorithm towards the solution. By means of a synthetic study, we demonstrate how our new hybrid approach provides inversion speed-up factors ranging from ∼3 to 7, depending on the degree of approximation. We conclude that the results are near identical in both model and data space. A field case confirms the conclusions from the synthetic examples: that there is very little difference between the full nonlinear solution and the hybrid versions, whereas an inversion with approximate derivatives and an approximate forward mapping differs significantly from the other results.
KW - AEM
KW - approximate Jacobian
KW - hybrid minimisation
KW - large dataset inversion
UR - http://www.scopus.com/inward/record.url?scp=84998887173&partnerID=8YFLogxK
U2 - 10.1071/EG14121
DO - 10.1071/EG14121
M3 - Article
SN - 0812-3985
VL - 47
SP - 323
EP - 330
JO - Exploration Geophysics
JF - Exploration Geophysics
IS - 4
ER -