Resumé
We are concerned with robust and accurate forecasting of multiphase flow rates in wells and pipelines during oil and gas production. In practice, the possibility to physically measure the rates is often limited; besides, it is desirable to estimate future values of multiphase rates based on the previous behavior of the system. In this work, we demonstrate that a Long Short-Term Memory (LSTM) recurrent artificial network is able not only to accurately estimate the multiphase rates at current time (i.e., act as a virtual flow meter), but also to forecast the rates for a sequence of future time instants. For a synthetic severe slugging case, LSTM forecasts compare favorably with the results of hydrodynamical modeling. LSTM results for a synthetic noisy dataset of a variable rate well test show that the model can also successfully forecast multiphase rates for a system with changing flow patterns.
Originalsprog | Engelsk |
---|---|
Sider (fra-til) | 191-196 |
Antal sider | 6 |
Tidsskrift | IFAC-PapersOnLine |
Vol/bind | 51 |
Udgave nummer | 8 |
DOI | |
Status | Udgivet - 1 jan. 2018 |
Udgivet eksternt | Ja |
Begivenhed | 3rd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production - Esbjerg, Danmark Varighed: 30 maj 2018 → 1 jun. 2018 Konferencens nummer: 3 |
Programområde
- Programområde 3: Energiressourcer